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Comparison of SLR and MLR analysis:  What’s New? … Not Much! 

1. As you'll see in the tables below, there are remarkably few substantive differences between 
SLR and MLR models with respect to estimation and inference.  Or put differently:  Virtually 
all of what you learned about SLR models carries over to MLR models. 

a. The MLR conditions (MLR.1-MLR.6) will replace the SLR conditions… but they are 
basically the same as the SLR conditions, though SLR.3 (variation in the RHS variable) 
is replaced by MLR.3 (no perfect collinearity amongst the RHS variables). 

b. In the MSE formula, you now divide by n-k-1 to generate an unbiased estimator (k is the 
number of explanatory variables in the model).1 

c. A new concept, the Variance Inflation Factor (VIF), is now in the estimator variance and 
standard error formulas. 

d. The t-distributions used in Hypothesis Testing and Confidence Intervals now have n-k-1 
degrees of freedom.  

e. And, umm, that’s about it. 

2. Similar to the SLR results, given MLR.1-5 and conditional on the x’s, 
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c. OLS will be a BLUE estimator. 

3. Inference is virtually identical to the SLR case 
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1 And yes, n-2 = n-k-1 for SLR models. 
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conduct Hypothesis Tests… just as we did in the case of SLR models, and when looking 
at the Sample Mean estimator. 

 SLR MLR 

Those (S/M)LR 
Assumptions 

SLR.1:  Linear Model 

0 1Y X Uβ β= + +  

MLR.1:  Linear Model 

0 j jY X Uβ β= + +∑  

 SLR2:  Random sampling MLR2:  Random sampling 

 SLR3:  Sampling variation in the 
independent variable 

MLR3:  No perfect collinearity 

 SLR.4:  Zero Conditional Mean 

( | ) 0E U X x= =  for any x 

MLR.4:  Zero Conditional Mean  

1( | , , ) 0nE U x x =  for any x1, … 

If these hold: LUE:  OLS provides unbiased 
parameter estimates 

LUE:  OLS provides unbiased 
parameter estimates  

SRF (Sample 
Regression 
Function) 

0 1
ˆ ˆŷ xβ β= +  0ˆ ˆj jy xβ β= +∑  

PRF (Population 
Regression 
Function) 

0 1( | )E Y X x xβ β= = +  1 0( | , , )k j jE Y x x xβ β= +∑  

Add one more 
assumption 

SLR.5:  Homoskedastic errors 
(conditional on x) 

MLR.5:  Homoskedastic errors 
(conditional on the xj’s) 

If all 5 conditions 
hold: 
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Gauss-Markov Thm. SLR.1-SLR.5 →BLUE MLR.1-MLR.5 →BLUE 

2.  Inference SLR MLR 

Add one last 
Assumption: 
Distribution of iY  

SLR.6: 2(0, )iU N σ  and indept. 
of X 

MLR.6: 2(0, )iU N σ  and indept. 
of the RHS variables 

Degrees of Freedom n-2 n-k-1 
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Intervals (C is 
confidence level) 
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estimates) 
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What's New?  Not much! 
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Variance Inflation Factors and Collinearity Regressions:  VIFs and SSRx 

4. At first glance the SLR and MLR standard error formulas appear to differ slightly, with a 

xVIF  adjustment included in the MLR formula: 
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5. But in fact, as you'll see below, both expressions can be rewritten as:   ˆ
x

x

RMSEse
SSRβ

= , where 

xSSR  is the SSR from the collinearity regression in which the RHS variable x has been 
regressed on the other RHS variables.  (In the SLR context, and as discussed above, this 
means that x is regressed on the constant variable, since there are no other RHS variables in 
the model.) 

6. And so in this sense, there is no change in the standard error formula in moving from SLR to 
MLR models.   

7. Here are the details: 

a. SLR:  If you regress x on the constant variable, you know from before that the OLS 
predicted value will be the mean of x, so x̂ x= .  In this case, residuals are defined by 
ˆ ˆi i iu x x x x= − = − , and so ( )2
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b. MLR:  We know that 
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iii. Accordingly, we have:  ˆ
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c. And so in both cases, for SLR and for MLR models, the standard error is RMSE divided 
by the square root of the SSRs from the respective collinearity regression. 
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8. Example:  Let's return to the movierevs dataset and working through a couple examples, 

which are built around the MLR model in which rtotgross is regressed on wk1, wk2 and wk3 
revenues.  Here are the regression results from the full model and the collinearity regressions.  
Note that Standard Errors are reported below the estimated coefficients (that's an esttab 
option:  se). 

 
. esttab, se r2 scalar(rss rmse) compress 
 
-------------------------------------------------------------- 
           Full Model           Collinearity Regressions       
                 (1)          (2)          (3)          (4)    
           rtotgross          wk1          wk2          wk3    
-------------------------------------------------------------- 
wk1            0.540***                  0.261***    -0.115*** 
            (0.0253)                 (0.00234)    (0.00336)    
 
wk2            0.745***     2.361***                  0.792*** 
            (0.0761)     (0.0212)                 (0.00603)    
 
wk3            4.778***    -1.146***     0.872***              
            (0.0798)     (0.0334)    (0.00664)                 
 
_cons         -0.601**      0.110       0.0817*       0.287*** 
             (0.227)      (0.102)     (0.0340)     (0.0323)    
-------------------------------------------------------------- 
N               7730         7730         7730         7730    
R-sq           0.921        0.886        0.959        0.908    
rss (SSR)  2,333,804      471,875       52,173       47,388    
rmse           17.38        7.815        2.598        2.476    
-------------------------------------------------------------- 
Standard errors in parentheses 
* p<0.05, ** p<0.01, *** p<0.001 
 

9. Let's confirm the standard errors in the Full Model using the formula above: 

a. 1
1

17.381: .02530
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b. 2
2

17.382 : .07609
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= = =  

c. 3
3

17.383: .07984
47,388

RMSEwk se
SSR

= = =  

10. In both SLR and MLR models, the standard errors are defined by:  ˆ
x
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= . 


